If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (9x2) + -59x + 133 = 0 Reorder the terms: 133 + -59x + (9x2) = 0 Solving 133 + -59x + (9x2) = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 14.77777778 + -6.555555556x + x2 = 0 Move the constant term to the right: Add '-14.77777778' to each side of the equation. 14.77777778 + -6.555555556x + -14.77777778 + x2 = 0 + -14.77777778 Reorder the terms: 14.77777778 + -14.77777778 + -6.555555556x + x2 = 0 + -14.77777778 Combine like terms: 14.77777778 + -14.77777778 = 0.00000000 0.00000000 + -6.555555556x + x2 = 0 + -14.77777778 -6.555555556x + x2 = 0 + -14.77777778 Combine like terms: 0 + -14.77777778 = -14.77777778 -6.555555556x + x2 = -14.77777778 The x term is -6.555555556x. Take half its coefficient (-3.277777778). Square it (10.74382716) and add it to both sides. Add '10.74382716' to each side of the equation. -6.555555556x + 10.74382716 + x2 = -14.77777778 + 10.74382716 Reorder the terms: 10.74382716 + -6.555555556x + x2 = -14.77777778 + 10.74382716 Combine like terms: -14.77777778 + 10.74382716 = -4.03395062 10.74382716 + -6.555555556x + x2 = -4.03395062 Factor a perfect square on the left side: ((x) + -3.277777778)((x) + -3.277777778) = -4.03395062 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 4x-6y=50 | | (38x+59y)+(35x-4y)= | | 204.00+82.00= | | (12x-30y)+(48x+57y)= | | 20x^3-480x^2=0 | | 12s^2+11st-15t^2=0 | | 4(5)+14= | | y=-11+4x | | 4p+14=8p-6 | | (53x+52y)+(-9x+36y)= | | 2t-60=t | | 21-60=t | | 2m-6=20 | | (11x+6y)+(39x+34y)= | | -3(5y-10)+2(3y+9)=m | | 30x^3y-85x^2y^2-70xy^2=0 | | 4(3.5)+1= | | 5.2(22-3.96x)= | | 9z-23=-55+5z | | 4n+1= | | 5.2(22-3.96)= | | 6(2x+7)+12x= | | 17-4x=3x-11 | | 25b^2-49=0 | | 35%2040.00= | | (85x-47y)-(50x+15y)= | | (4y^9w^5)(2y)(4w^5)= | | 3x-4+2x=2 | | y=11+-2x | | 180-64= | | (47x+47y)-(6x-5y)= | | 5.1=t+2.7 |